What Happens to 5-year Old Metakaolin Geopolymers? the Effect of the Alkali Cation
نویسندگان
چکیده
In this study we report X-ray diffraction and dilatometry results of metakaolin (MK) geopolymers produced with Na, K, Rb or Cs silicate solutions, and cured for 7 days and 5 years, with the aim of identifying variations in structure and performance (dimensional stability at elevated temperature) over an extended curing period at ambient temperature. All of the geopolymers studied are mainly X-ray amorphous after 5 years of curing; however, in Rb-based and Cs-based geopolymers formation of aluminosilicate crystalline phases was identified. As the alkali cation radius increases, so does the thermal stability of the MKgeopolymer, potentially as a consequence of the combined effect of the higher degree of ordering of the geopolymer itself, which might retard the dehydration of the geopolymers upon heating, and the reduced energy of hydration of larger alkali cations. The 7-day and 5year cured samples produced with Rb and Cs silicate solutions do not exhibit significant dimensional changes above 300C, with a maximum shrinkage of 2% after exposure to 1100C. This shows that increasing the radius of the alkali cation during geopolymerisation of MK has an effect on the thermal stability of these materials, and promotes the formation of a highly densified and rigid structure at advanced curing ages.
منابع مشابه
Preparation and Properties of Alkali Activated Metakaolin-Based Geopolymer
The effective activation and utilization of metakaolin as an alkali activated geopolymer precursor and its use in concrete surface protection is of great interest. In this paper, the formula of alkali activated metakaolin-based geopolymers was studied using an orthogonal experimental design. It was found that the optimal geopolymer was prepared with metakaolin, sodium hydroxide, sodium silicate...
متن کاملOptimizing the Properties of Metakaolin-based (Na, K)-Geopolymer Using Taguchi Design Method
Geopolymer paste is an innovative construction material which shall be produced by chemical action of inorganic molecules. It is a more environmentally friendly alternative to conventional Portland cement which is abundantly available worldwide. In this study, the influence of different alkaline activators (Na and K) on the mechanical and thermal behaviors of metakaolin-based geopolymer was inv...
متن کاملModeling of Compressive Strength of Metakaolin Based Geopolymers by The Use of Artificial Neural Network RESEARCH NOTE)
In order to study the effect of R2O/Al2O3 (where R=Na or K), SiO2/Al2O3, Na2O/K2O and H2O/R2O molar ratios on the compressive strength (CS) of Metakaolin base geopolymers, more than forty data were gathered from literature. To increase the number of data, some experiments were also designed. The resulted data were utilized to train and test the three layer artificial neural network (ANN). Bayes...
متن کامل(Micro)-structural comparison between geopolymers, alkali-activated slag cement and Portland cement
Concurrently to research conducted on ordinary Portland cement (PC), new types of binders were developed during the last decades. These are formed by alkali-activation of metakaolin or ground-granulated blast furnace slag (GGBFS) and are named, respectively, geopolymers (GP) or alkali-activated slag (AAS). Four different cementitious materials were synthesised: PC, AAS, GP, and a mix GP-AAS and...
متن کاملEFFECT OF CALCINATION TEMPERATURE OF THE KAOLIN AND MOLAR Na2O/SiO2 ACTIVATOR RATIO ON PHYSICAL AND MICROSTRUCTURAL PROPERTIES OF METAKAOLIN BASED GEOPOLYMERS
Metakaolinite-based geopolymer has been synthesized at about 25 °C from metakaolin which has been calcined in different temperatures (600-900 °C) and different Na2O/SiO2 ratio activator (0.3-1.1). Compressive strength and microstructure of cement pastes after 7-28 days curing at ambient temperature were measured. Compressive strength tests on the samples showed that the sample made with calcine...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016